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Introduction

Consider a traveling or steady wave moving through a body of
water in R2.

Shifting to a reference frame moving to the right at the wave
speed c , the water occupies the domain

Ω := {x ∈ R2 : −d < x2 < η(x1)},

where the air–sea interface S is given as the graph of a smooth
free surface profile η = η(x1).

The ocean depth is d ∈ (0,∞].



x2 = −d

x2 = η(x1)

Ω
{

(v − c) · ∇v +∇p + ge2 = 0

∇ · v = 0.

{
(v − c) · N = 0

p = τκ

v2 = 0

The flow is described by the velocity field v : Ω→ R2 and pressure
p : Ω→ R.

Here g > 0 is the gravitational constant, τ > 0 is the coefficient of
surface tension, κ is the mean curvature, and N is the outward
normal.



The vorticity ω is the scalar distribution

ω := ∂x1v2 − ∂x2v1.

Historically, most investigations of water waves have been
conducted in the irrotational setting, i.e., with ω ≡ 0.

This is justified on physical grounds (as it propagated by Eulerian
flow), but the main appeal is mathematical convenience: if ω ≡ 0,
then

v = ∇ϕ, ∆ϕ = 0 in Ω

for some velocity potential ϕ. Thus one can push the entire
problem to the boundary, where it typically becomes nonlocal.
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On the other hand, rotational steady waves occur frequently in
nature (due to wind forcing, heterogeneous density, etc.) Here,
significant progress has been made only recently.

We now enjoy a bounty of existence results for various regimes of
rotational waves (gravity waves, stratified waves, waves of infinite
depth, waves with critical layers, capillary, and capillary-gravity
waves, for example).

Clearly, though, the rotational theory is far less explored than the
irrotational.



One common feature of the vast majority of these existence results
for rotational waves is that the vorticity is not compactly
supported.

This can be thought of as a consequence of their construction:
they are built as perturbations of shear flows, and vorticity is
constant along the streamlines.
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In summary, there is a vast body of work on the irrotational case,
and a rapidly growing body of work for the rotational case (where
ω does not even vanish at infinity!).

But there is an important middle point: traveling waves where the
vorticity is localized.



Recently, with a number of collaborators, I have been investigating
various properties of these localized vorticity water waves.

In this talk, I will present some existence results for 2-d traveling
waves with point vortices and vortex patches and some ongoing
work on stationary waves with exponentially localized vorticity.

The main topic will be the stability of the traveling waves with a
point vortex, which is established using a new abstract framework.



Existence theory

Our main objects of interest are traveling waves with a point
vortex. This describes the situation where ω is a Dirac δ-measure:

ω = εδx,

with ε ∈ R being the vortex strength and x ⊂ Ω is the center of
the vortex.



We may decompose the velocity field as

v = ∇Φ + ε∇⊥Γ,

where Φ is a harmonic function and Γ gives the rotational part of
the flow. Indeed, taking the curl of this identity shows that

δx = ∆Γ,

and hence

Γ = Newtonian potential + harmonic function.

We choose the harmonic function to counteract the logarithmic
growth of the potential at infinity; think of it as a “phantom
vortex” outside Ω.



If dist (x, S) > 0, then v can be written as a gradient near the
boundary just as in the irrotational regime:

v = ∇Φ + ε∇Ψ,

where Ψ = Ψ1 −Ψ2 is given by

Ψ1(x) := − 1

2π
arctan

(
x1 − x1
x2 − x2

)
Ψ2(x) := − 1

2π
arctan

(
x1 − x1
x2 + x2

)
.

Note that Ψ1 is roughly the harmonic conjugate of the Newtonian
potential in R2. The purpose of the Ψ2 term is to ensure that
Ψ ∈ Ḣ1.



The kinematic condition takes the form

0 = cη′ + (−η′, 1) · ∇(Φ + εΨ) on S .

Likewise, the Bernoulli condition is

−c∂x1(Φ + εΨ) +
1

2
|∇(Φ + εΨ)|2 + gx2 + τκ = 0 on S .

Recall that τ > 0 is the coefficient of surface tension and κ is the
curvature of the surface.



Following the general strategy of the Zakharov–Craig–Sulem
formulation of the time-dependent probelm, let ϕ be the restriction
of Φ to S :

ϕ = ϕ(x1) := Φ(x1, η(x1)).

Tangential derivatives of Φ can be written in terms of x1-derivative
of ϕ and η.

To take normal derivatives, we use the Dirichlet–Neumann
operator N (η) and its non-normalized counterpart G(η)

G(η) :=
√

1 + (η′)2N (η).



Then the Bernoulli condition becomes

0 = −c
(
ϕ′ + ε(1, η′) · (∇Ψ)|S

)
+

1

2

(
ϕ′ + ε(1, η′) · (∇Ψ)|S

)2
− 1

2(1 + (η′)2)

(
G(η)ϕ+ η′ϕ′ + ε(1 + (η′)2)(∂x1Ψ)|S

)2
+ gη + τκ,

and the kinematic condition is

0 = cη′ + G(η)ϕ+ ε(1, η′) · (∇Ψ)|S .



Finally, we must couple the motion of the point vortex to the flow.

The correct governing equation (obtained by taking the limit as
the support of ω shrinks to a point) is to have the center of the
vortex x advected by the irrotational part of the flow:

c = (∂x1Φ)(x)− 1

4π|x2|
.

Thus, for traveling waves, the point vortex is stationary in the
moving frame.

We will fix its position to be (0,−a)T , where a is the altitude and
is treated as a parameter.



The main existence theorem is then the following. For a regularity
index s ≥ 3/2, define

W := Hs
e (R)×

(
Ḣs
o(R) ∩ Ḣ

1
2
o (R)

)
× R.

where the subscripts ‘e’ and ‘o’ denote evenness and oddness in x1,
respectively.
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Theorem (Shatah–W.–Zeng, Varholm–Wahlén–W.)

For every a0 ∈ (0,∞), there exists ε0 > 0, α0 > 0, and C 1 surface

Sloc = {(η(ε, a), ϕ(ε, a), c(ε, a), ε, a) : |ε| < ε0, |a− a0| < α0}
⊂W× R× R

to the traveling capillary-gravity water wave with a point vortex
problem. In a sufficiently small neighborhood of 0, Sloc comprises
all solutions.



The proof is an implicit function theorem argument that also
furnishes an asymptotic description:

η(ε, a) =
ε2

4π2
(
g − τ∂2x1

)−1 [ x21 + 3a20(
x21 + a20

)2
]

+ O
(
|ε|3 + |ε||a− a0|2

)
ϕ(ε, a) = O

(
|ε|3 + |ε|2|a− a0|+ |ε||a− a0|2

)
c(ε, a) = − ε

4πa0
+
ε(a− a0)

4πa20
+ O

(
|ε|3 + |ε||a− a0|2

)
.



There are a number of other related existence results that we
won’t discuss in detail today:

I small-amplitude steady capillary-gravity waves with one or
more point vortices in finite-depth [Varholm];

I global bifurcation for periodic capillary-gravity waves with a
point vortex [Shatah–W.–Zeng];

I small-amplitude traveling capillary-gravity waves with a vortex
patch (with generic vorticity distribution in the patch)
[Shatah–W.–Zeng]; and

I small-amplitude stationary capillary-gravity waves with
exponentially localized vorticity [Ehrnström–W.–Zeng].



Stability theory

Now, we would like to discuss the stability theory for these
solutions.

The main machinery for proving this is a generalization of the
classical work of Grillakis–Shatah–Strauss on stability of abstract
Hamiltonian systems.



Hamiltionian formulation

With that in mind, we must first convince ourselves that this is
indeed a Hamiltonian system.

We expect this might be true since the irrotational capillary-gravity
water waves problem is Hamiltonian, and the motion of point
vortices in the plane is Hamiltonian.



The energy is given by

E = E (η, ϕ, x, ε) := K (η, ϕ, x, ε) + V (η),

where the kinetic energy K is

K (η, ϕ, x, ε) :=
1

2

∫
ϕG(η)ϕ dx1 + ε

∫
ϕ(∂⊥Ψ)|S dx1

+
ε2

2

∫
(∂⊥Ψ)|SΨ|S dx1 +

ε2

2
log |2x2|,

and the potential energy V is

V (η) :=

∫ (
1

2
η2 +

τ

g
(
√

1 + η2x − 1)

)
dx1.

Here ∂⊥ := −η′∂x1 + ∂x2 . Finally, the momentum P is given by

P(η, ϕ, x, ε) := εx2 −
∫
η′(ϕ+ εΨ|S) dx1.
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Theorem (Varholm–Wahlén–W.)

The capillary-gravity water wave problem with a point vortex is
equivalent to the Hamiltonian equation

du

dt
= J(u, ε) DE (u, ε), u = (η, ϕ, x)T ,

where for each (u, ε), J(u, ε) is the skew-symmetric operator

J(u, ε) :=


0 1 0 0
−1 J22 J23 J24
0 J32 0 1/ε
0 J42 −1/ε 0

 ,

with entries (denoting Θ := Ψ1 + Ψ2)

J22 := −ε(∂x2Θ)|S〈·, (∂x1Ψ)|S〉+ ε(∂x1Ψ)|S〈·, (∂x2Θ)|S〉
J23 := −(∂x2Θ)|S , J24 := Ψx1 |S ,
J32 := 〈·, (∂x2Θ)|S〉, J42 := 〈·, −Ψx1 |S〉.



We can also show that traveling waves are critical points of the
augmented Hamiltonian

Ec := E − cP.

One can think of steady waves as minimizers of the energy E
subject to fixed momentum P; the wave speed c is a Lagrange
multiplier.



GSS framework

To study the stability of traveling waves (bound states) in a
Hamiltonian system of this type, a very powerful tool is the
Grillakis–Shatah–Strauss (GSS) method.

An abbreviated statement of their result is the following. Suppose
that one has a Hamiltonian system

du

dt
= J DE (u), u ∈ C 1(R+;X)

for which the Cauchy problem is globally well-posed on a Hilbert
space X. Here J : X∗ → X is a skew symmetric operator that is
surjective.
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Assume that the entire system is invariant under translation in
some direction.

This symmetry generates an additional conserved quantity P.

Assume that there is a family of traveling waves {Uc : |c | < c0}
that are critical points of the augmented Hamiltonian
Ec := E − cP, and that

spec (D2Ec(Uc)) = {−µ2c} ∪ {0} ∪ Σ,

where −µ2c < 0 is simple, and Σ ⊂ R+ is positively separated from
0.



Finally, define the moment of instability d by

d(c) := E (Uc)− cP(Uc).

The main conclusion in GSS is that:

I If d is convex at c , the corresponding Uc is orbitally stable.

I Conversely, if d is concave at c , then Uc is orbitally unstable.



Unfortunately, our problem doesn’t fit into the hypotheses of the
GSS theory.

I J is state-dependent: J = J(u, ε). Even for a fixed vortex
strength, the symplectic structure is not flat.

I J is not surjective.

I There is no global well-posedness theory for the Cauchy
problem at the level of the natural energy space. Moreover,
the energy E and momentum P aren’t even defined unless we
assume further regularity.
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These obstructions to applying GSS are quite common in water
waves.

I For KdV, J = ∂x , which is not surjective on the natural energy
space. Many other examples in dispersive model equations.

I In Benjamin’s Hamiltonian formulation of 2-d internal waves,
the state variables are the density ρ and “vorticity like
quantity”

σ := ∇ · (ρ∇ψ),

where ψ is the stream function, and

J(ρ, σ) =

(
0 ∇⊥ρ · ∇

∇⊥ρ · ∇ ∇⊥σ · ∇

)
.

I A mismatch between the energy space and the space where
well-posedness has been proved is typical when higher-order
energy methods are needed.
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Abstract stability/instability theory

With that in mind, as we studied the stability of traveling waves
with a point vortex, we developed an abstract theory that relaxes
the assumptions in GSS.

For the purposes of this talk, we will present the general theory
while giving as an example the point vortex problem.



We begin with a gradation of Hilbert spaces

V ⊂W ⊂ X.

Here X is the energy space where the spectral theory will be
formulated.

For the point vortex, we take

X := H1(R)× Ḣ1/2(R)× R2,

endowed with the natural inner product

(u, v)X := (u1, v1)H1(R) + (|∂x1 |
1
2 u2, |∂x1 |

1
2 v2)L2(R) + u3 · v3.
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Think of W as the well-posedness space.

Assumption 1. The Cauchy problem is locally well-posed for
initial data in some open O ⊂W.

For the point vortex problem, we specifically take

W := Hs+ 1
2 (R)× (Ḣs(R) ∩ Ḣ1/2(R))× R2,

for a fixed s > 3/2. This is necessary to ensure, for example, that
the Dirichlet–Neumann operator is well-defined.

For O, we take (η, ϕ, x) ∈W such that the point vortex is
positively separated from the free surface.
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Finally, V is the “very smooth” space. The idea here is that, in
order to translate spectral information (which gives control in X)
up to the well-posedness space W, we must interpolate with a
higher-regularity space.

Assumption 2. For all v ∈ V, we have the interpolation-type
inequality

‖v‖3W . ‖v‖2X‖v‖V.

For the point vortex problem, one can take

V = H3s+ 1
2 (R)× (Ḣ3s(R) ∩ Ḣ1/2(R))× R2.
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We denote by X∗ the dual of X; the natural isomorphism
I : X→ X∗ is then given by

〈Iu, v〉 := (u, v)X, for all u, v ∈ X.

For the point vortex problem, I takes the form

I = (1− ∂2x1 , |∂x1 |, Id),

where Id is the 2× 2 identity matrix.



We consider abstract Hamiltonian systems of the form

du

dt
= J(u) DE (u), u|t=0 = u0.

Assumption 3. The energy is smooth

E ∈ C 2(O;R).

Moreover, for each u ∈ O,

J(u) : D(J) ⊂ X∗ → X

is a densely defined closed linear operator (with domain D(J)
independent of u) that has dense range.



Assumption 4. The system is invariant under a continuous
symmetry group T (·). The symmetry group generates a conserved
quantity P ∈ C 2(O;R). Furthermore, T interacts “nicely” with J.

For the point vortex case, T (·) : X→ X is the one-parameter
family of densely defined mappings given by

T (σ)

ηϕ
x

 :=

η(· − σ)
ϕ(· − σ)
x + σe1

 .

It is easy to see that

E (T (σ)u) = E (u), P(T (σ)u) = P(u),

for all σ ∈ R, u ∈ O.
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By “nice interaction” we mean more precisely that, letting

(dT )(σ)u :=

η(· − σ)
ϕ(· − σ)

x

 , for all u = (η, ϕ, x)T ,

then dT (·) is an isometry on X, W, and V. It is unitary in an
appropriate sense, and commutes with J(u):

dT ∗(σ)J(u)I = J(T (σ)u)IdT (σ), for all σ ∈ R.



We say that u ∈ C 1(R;O) is a traveling wave solution of the
Hamiltonian system provided that

u(t) = T (ct)U,

for some c ∈ R and stationary U ∈ O.

Assumption 5. There exists a one-parameter family
{Uc : |c | < c0} such that

(−c0, c0) 3 c 7→ Uc ∈ O ∩ V

is of class C 1, and u(t) := T (ct)Uc is a traveling wave solution.

Note that inserting this ansatz into the equation, we infer that
each Uc is a critical point of the augmented Hamiltonian.
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For the point vortex problem, we take the family Sloc, fix
0 < |ε| � 1, and then reparameterize in terms of c , allowing a to
vary.

This furnishes a family{
Uc = (η(c), ϕ(c), x(c)) ∈ O : |c| � 1

}
.

It is easy to show that {Uc} meets the above hypotheses.



Assumption 6. D2 Ec(Uc) : W→W∗ extends to a bounded
operator Hc(Uc) : X→ X∗ that is self-adjoint in the sense that
I−1Hc(Uc) is a bounded symmetric operator on X.

Moreover,
spec(I−1Hc) = {−µ2c} ∪ {0} ∪ Σ,

where −µ2c < 0 is a simple eigenvalue with eigenvector χ ∈W, 0 is
a simple eigenvalue generated by T (·), and Σ is a subset of the
positive real axis that is bounded away from 0.



We call the set {T (σ)u : σ ∈ R} the u-orbit generated by T . Our
objective is to prove that these orbits are stable or unstable.

With that in mind, for each r > 0, we define the tubular
neighborhood of the Uc -orbit generated by T by

UW
r := {u ∈W : inf

σ∈R
‖u − T (σ)Uc‖W < r}.

Likewise,

UV
r := {u ∈ V : inf

σ∈R
‖u − T (σ)Uc‖V < r}.
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Theorem (Varholm–Wahlén–W.)

For all c 6= 0 such that d ′′(c) > 0, Uc is conditionally orbitally
stable in following sense.

For any R > 0 and r > 0, there exists r0 = r0(R, r) such that, if

u0 ∈ UW
r0 ∩O and ‖u0‖V < R,

then
u(t) ∈ UW

r ∩O

for as long as u exists and obeys the bound ‖u(t)‖V < 2R.
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Theorem (Varholm–Wahlén–W.)

For all c 6= 0 such that d ′′(c) < 0, Uc is conditionally orbitally
unstable in following sense.

For all r > 0 sufficiently small, one of three alternatives must hold.

I Globally ill-posed. ∃u0 ∈ UW
r ∩O and t0 <∞ for which

lim
t→t0−

[
‖u(t)‖W +

1

dist (u(t), ∂O)

]
=∞.

I Uncontrolled growth in V. ∀R > 0, ∃uR0 ∈ UW
r ∩ UV

r ∩O for
which u exits UV

R in finite time.

I Unstable in W. ∀r0 > 0, ∃u0 ∈ UW
r0 ∩O such that u exits UW

r

in finite time.
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Return to the point vortex problem

With this general theory in hand, let’s return to our original
question.

Theorem (Varholm–Wahlén–W.)

For all 0 < |c | � 1, (η(c), ϕ(c), x(c)) is conditionally orbitally
stable in the above sense.

To prove this theorem, we must verify the assumptions of the
abstract theory and show that

d ′′(c) > 0 for all 0 < |c | � 1.
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Observe that ϕ occurs quadratically in the energy and can thus be
eliminated rather simply:

Fix (η, x, ε) and consider the augmented potential

V aug
c = V aug

c (η, x, ε) := min
ϕ

Ec(η, ϕ, x, ε).

One can easily calculate that

V aug
c (η, x) = Ec(η, ϕ∗, x, ε),

where

ϕ∗ = ϕ∗(η, x, ε) := −G(η)−1
[
ε(∇⊥Ψ)|S + cη′

]
.
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It suffices, therefore, to compute the spectrum of D2 V aug
c .

This is a rather lengthy and not-so-trivial calculation that borrows
some ideas from Mielke’s proof of stability for small-amplitude
(irrotational) capillary-gravity solitary waves.

Ultimately we find that, for 0 < |ε| � 1,

spec (D2 V aug
c ) = {−µ2} ∪ {0} ∪ Σ,

where −µ2 < 0 is a simple negative eigenvalue, and Σ ⊂ R+ is
positively separated from 0.

Finally, we compute d and show that it is index convex at each c
with 0 < |c | � 1.



We hope to apply this framework to a number of other problems.

I New proof of [Bona–Souganidis–Strauss] result on
stability/instability of KdV solitons.

I Many other problems in the future (internal waves, vortex
patches, other dispersive model equations, . . . ).
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